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Abstract. This paper is devoted to the study of the conformally broken system related to 
the conformally invariant SL(2. ‘R) WZNW model. Our starting point is such an action that is 
similar in form to the action of gauged WZNW theories developed by Balog el al. However, 
the Lagrangian multipliers in our case are assumed to take their values on the mixing of upper 
and lower Borel subalgebras of sI(2). The system obtained h”-ns out to be an off-conformal 
extension of the sinh-Gordon model. Its integrability is displayed by Lax formalism with an 
arbimq specual parameter, the classical r-matrix, and the hidden dressing symmeuy. 

The two-dimensional WZNW models are amongst the most fundamental conformal field 
theories (CFTS), their gauged or constrained versions now attracting the attention of many 
researchers. In the framework of Hamiltonian reduction, some of the important conformally 
invariant systems, such as the Liouville model, Toda models, extended Toda models, 
conformally affine Toda models and the coset models of cms, have already been formulated 
as the gauged wZNW field systems [l-lo]. Therefore these systems can be solved by 
means of resolving wziwi models. The other properties of these systems, for instance their 
conformal algebras (W-algebras) and correlation functions, could also be obtained with the 
help of w m  models. 

As is well known, the conformal field theory only describes the critical points of 
statistical systems. The scaling regions near criticality have to be described by some 
conformally broken theories whose ultraviolet fixed points are m s .  In view of this fact, an 
important area of study has become the off-conformal behaviours for the systems described 
by cms. Particular interest centres on building in a non-perturbative way new theories from 
the conformal w z w  models that are no longer conformally invariant but that still keep 
their integrability [3,8]. To OUT knowledge, an interesting advance which has been made 
in this direction can be characterized by the so-called Babelon-Bonora mechanism [5 ] .  In 
terms of this mechanism, one should start with the two-loop WZNW models (based on affine 
Lie groups with a non-vanishing centre) and construct new’ cms via Hamiltonian reduction 
procedure, and then induce the off-conformal systems through the so-called ‘spontaneous 
breaking’ of the conformal symmetries. Relying on such an idea, the off-conformally 
integrable sinh-Gordon as well as the general afrine Toda models have successfully been 
connected with the two-loop WZNW theories [6] .  Moreover, the soliton solutions of these 
conformal broken systems have been obtained by virtue of the representations of the two- 
loop Kac-Moody algebras 19, IO]. 
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It goes without saying that the aforementioned Babelon-Bonora mechanism is very 
important in the development of non-perturbative off-conformally integrable field theories. 
However, it is still necessq to examine other methods for directly inducing the conformally 
broken integrable systems from conformal WW models. If such methods exist, we will 
enhance our understanding about the off-critical phenomena of Wzhw models, and better 
describe the relevant phase transitions. Motivated by these facts, in the present paper we 
construct a constrained SL(2, R) WZNW model. The classical action of the constrained 
system considered here has the same form as that of the gauged WZNW theories developed 
by Balog et al [4] except that in our case the Lagrangian multipliers A&) assume such 
forms that these A*@) can no longer be explained as gauge fields. The constants p, U 
are also taken different forms from those in 141. Hence what we are considering cannot 
be explained as a gauged S L ( 2 ,  R) WZNW theory. Just as we would expect, the physical 
ingredient of the constrained system is off-conformal invariance. This induced off-conformal 
system is neither the standard sinh-Gordon model nor the 'conformal s l (2)  To& model' 
given by Babelon and Bonora. but an extension of the sinh-Gordon model. It is also shown 
that such an off-conformal system does continuously preserve its integrability, at least at 
the classical level. 

Let us first briefly review the gauged SL(2 ,  R) WZNW theory of Balog et al. The starting 
point is the WZNW model based on the simple Lie group S L ( 2 ,  R) with a three-dimensional 
Lie algebra sl(2) 

[H, E ]  = 2E 

Tr(H2) = 2 
whose action is as follows: 

[H, F]  = -2F 

Tr(EF) = 1 
[ E ,  F] = H 

swNw(g) = - d2x Tr(a,gg-Ia'gg-') - - d'x Eij~Tr(aigg-Ia,gg-la~gg-l) ( I )  " S  2 :L 
where the field g ( x )  takes its value on SL(2, , R) group manifold, and K is a dimensional 
coupling constant. The famous Balog et al gauged WZNW theory is then defined by 

I @ ,  A+) = S m ( g )  t K /d2x Tr[A-(a+gg-l - p )  + A+(g-'a-g - U) t A-gA+g-'] 

( 2 )  
In (2) the constant p, U and the Lagrangian multipliers A*(x) are considered to take their 
values on the Bore1 subalgebras of sZ(2): p = F ,  v = E ,  A- = AIE and A t  = A$F. It 
is due to these choices of the Lagrangian multipliers that the action (2)  is invariant under 
the local gauge transformations 

g -+ a g p  
where 

(a, = a0 * al)  

A- + ~ A J -  I t aa-a-l At -+ p A + F '  t a + W '  

ly = exp(ly(x)E) @ = exp(p(x)F). 
It is obvious that the gauge invariant content is just defined on the subspace of the solution 
space of the SL(2 ,  R) WZNW model, which does naturally keep the original conformal 
symmetry. 

Now we establish the conformally broken version of the above gauged WZNW theory. 
The expected off-conformal system is still defined by the action (2) .  But the constants p, 
U as well as Lagrangian multipliers A&) are in our case replaced by 

v = J r T i ( E  t F) 

A+ = A $ F  + A;E 
(3) 

P = m ( E  t F) I A - = A ? F + A I E  
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where y is another non-vanishing constant. Owing to (3). the action (2) is no longer invariant 
under any gauge transformation. This is a striking difference between our system and that 
of Balog et nl. The absence of local gauge symmehy also makes our system different from 
Park's off-conformal system described by integro-differential equations [3], which contain 
the sinh-Gordon equation as a special case. The equations of motion following from (2) 
and (3) read as 

a-(a+gg-] + gA+g-]) + a+A- - [a+& + gA+g-I, A-] = o 
a+(g-Ia-g +g-IA-g) + a u +  - [A+. g-la-g + g - l ~ - g ]  = o 
Tr[E(a+gg-' + g A + g - ]  - p)]  = 0 

Tr[F(a+gg-' +gA+g-' - p)] = 0 

Tr[E(g-'a-g + g- 'A-g  - U)] = 0 

(4) 

Tr[F(g-'&g +g-'A-g - U)] = 0. 

The last four of these equations are clearly constraints: the number of independent fields in 
the system considered is therefore three. 

The WZNW model, which we start with, is based on the non-compact group manifold 
S L ( 2 , R ) .  So the group-valued field g ( x )  is allowed locally decomposed into [l] 

g ( x )  = exp(uE)exp(@H)exp(wF). (5) 

Such a factorizable form is usually called the 'Gaussian decomposition' of g(x) .  With the 
group parameters U, @ and w appearing in (5), we discover that the explicit solutions of the 
above constraints are 

A -  = -[a-u - m e v  - U ~ P J E + P , F  

A+ = P,E - [a+w - m e -  - W ~ P , I F  

P, = [m(~ + W*) + 2wa-4 - a-,] /(exp(2@) + zvw) 

P, = [m(~ + u2) + 2ua+4 - a+u] /(exp(Z+) + 2 ~ .  

a+a-4 + (y/2)ew + m(uZ - I)P, - a-(w%) = o 
a+?, t 2(a+@ + &TZU - WP,)P, = o 
a-p, + 2 ( a 4  + &Pw - UP")P, = o 

where 

Then the equations of motion for our system can be recast as 

(6) 

where the constrainu; have been eliminated. Note that in the Limit U = w = 0, the first 
equation of (6) degenerates to the standard sinh-Gordon equation and the others hold as 
identities. The system described by (6) is therefore an extension of the sinhGordon model 
whose Lagrangian density is 

C. = K [a+$a-@ - ( e x p ~  + ~UW)P,P, + (a-v t a+w) - (y/2) e x p ~ ) ]  . (7) 

The system (7) is expected to be off-conformal. This can directly be shown by examining 
the transform properties of (6) under conformal transformation. But we would rather assume 
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another indirect way for our purpose. From (7) we see that the canonical momenta conjugate 
to the fietds 4, U and w are 

iQ = 2K [&$ - UP” - W P , ]  nu = K [ ~ L ,  4- m1 = KIPLO + m1 (8) 

respectively. The basic (equal-time) Poisson brackets of these canonical variables are as 
usual defined as 

I 1  Id+). T d Y ) )  = I“ n,(y)I = I W ( X ) ?  ?Iw(Y)I = S ( x  - Y ). 

Making use of these canonical variables and their Poisson brackets, we introduce the 
classical SL(2 ,  R) Kac-Moody currents in phase space 

j ( H , x )  = n + + Z u n , + 2 ~ a j $  

j ( E .  4 = ?I, 

j ( ~ , x ) = - u n ~ - u 2 i r , + n , e x p 2 ~ + 2 K ( ~ ] U - v a l $ )  
- 
j ( H , x )  = - n + - 2 w n U + 2 ~ a l d  

j ( E , x )  = ~ n + + ~ ~ n , - n ~ e x p 2 $ + 2 ~ ( a ~ w - w a ~ ~ )  

j ( F ,  x )  = -?I,. 
- 

It is not difficult to see that these currents are subject to the following Poisson bracket 
algebra 

( j ( A , x ) ,  j ( B , y ) l  = j ( [ A , B l , x ) 6 ( x ’  -y1)+2KTr(AB)6’(x‘ -yl) 

[ j ” ( A , x ) ,  j”(B, y ) )  = j”([A, B ] , x ) S ( x ’  - y ’ )  - kTr(AB)G’(x’ - y ’ )  

M A ,  x ) .  j”(B, Y ) )  = 0 

#(XI - yl) = a16(x1 - yl) 

(9) 

where A and B are two arbitrary elements of the sl(2) algebra. In terms of the basic fields 
$, U and U ) ,  the Kac-Moody currents can also be recast as 

j ( H , x )  = 2 ~ [ a + $ + & 7 2 u - w P , ]  

j ( E ,  x )  = ~ [ p ”  + &ZI 
j ( F ,  x )  = K[-a-v + U*P” + m ( e w  + I ) ]  

j ” ( ~ , ~ )  = - z K i a _ $  + m w  - UPJ 

j ( F , x )  = -KIPu + m1. 

= - ~ [ - a + w  + W’P, + m ( e w  + 1 ) 1  

I 
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or - I - -  
a+J- - a-Jt + [J-. J+I = o 
J - ( x ) =  (1 /2K) j" (H,x)H-f i ( (E+F)  
I 

F+(x) = - [ ( l / ~ ) % . x )  + m I E  - [ ( l /~) j"(E,x)  - mIF. 
These two zero-curvature equations make i t  clear that the Kac-Moody currents in the 
considered system do not obey the chiral conservation laws. Therefore, such a system 
must have lost the conformal symmetry, although it came from the conformally invariant 
SL(2 ,  R) w z w  model. 

We are now obliged to investigate the integrability for our system (7). This is because 
we are only interested in such off-conformal systems that continue to be completely 
integrable [ l l l .  This issue will be discussed from the inverse scattering points. Enlightened 
by the algebraic structures of above zero-curvature equations, we find out that the equations 
of motion (6) have the followring Lax representation: 

(11) 
- 

[a0 - M ( x ,  A), ai - z ( x ,  A)] = 0 

G(x,A)  = ( 1 / 4 ~ ) j ( H , x ) H +  1 [((l +A)/A)m - ( l / K ) j ( F , x ) ] E  

with which an arbitrary spectral parameter h has been decorated non-trivially. The presence 
of the parameter A in the Lax pair is extremely important for showing integrability, which 
would imply that the symmetry hidden in the considered system is described by an infinite- 
dimensional loop algebra. 

(z(x, A):&, P ) ]  = [%La 

It then follows, from the classical Kac-Moody current algebra (9), that: 

1) @ 1 t 1 @ Z(Y,  P)]  W1 - Y') 
- [ Y ( ~ , P ) , z ~ x , A ~ @ l - 1 @ z ~ Y , P ~ ] s ( x ' - y ' ) - 2 s ( ~ . P ~ s ' ( x ' - y ' )  

( 1 3 )  
where 

- I 
$(I, P )  = --[$I? 0 H + P E  @ F + IF@ E ] .  

After lengthy but straightforward computation we see that these F(h, /L) and ? ( E ( h .  w) satisfy 
the so-called extended Yang-Baxter equation [12] 

4K 

[F+32S(V, q) ,  G+3)12(h.P)] + [G+323(v. V ) ,  F+9)13(h- q ) ]  

+[G+h(A, v ) . G - ~ I ~ ( L P ) ]  -0. 
So the fundamental Poisson bracket ( 1 3 )  satisfies the Jacobian identity, and the system (7) 
is thereby a completely integrable system [U, 131. 



6530 BO-YU HOU er a/ 

Despite the fact that the bracket (13) assumes a non-ultralocal form, the system under 
consideration is virtually an ultralocally integrable system. In terms of the canonical 
expressions of Kac-Moody currents,Jisted before equation (9). one can easily deennjne 
that in phase s p a s  the Lax operator L ( x ,  A) in (12) can be divided into two parts L = L(O1 
+ zc') of which L(O1 is defined only as the sum of terms that are not involved in the spatial 
derivatives of the canonical variables. Correspondingly - 

L( ' )  = fal@H + (a,u - u ~ ' @ ) E .  

The space-derivatives of the fields @ and U in E('] result in the S'(x' -y')-term appearing in 
the fundamental Poisson bracket (13), which is the very reason why (13) is non-ultralocal. 
Fortunate& this non-ultralocality for the system (7) is merely an outward non-ultralocality. 
Note that L(') exhibits as the spatial component of a pure gauge potential E(" = alolol-' 

[U = exp(uE) exp($H)]. Hence the above non-ultralocality can be removed via the 
following symmetric gauge transformation for zero-curvature equation (1 I): 

2 + M = a-*&a f aOCu-'a L" + L = a - ' L  + ala-". 
Consequently we get an alternative Lax representation for the system (7), namely 

1% - M(x,  A), a, - L ( x ,  A)l = 0 (15) 

~ ( x ,  A) = 4 [(al@ - ~ P , ) H  +e+(?, - * ) E  - e-+(uZp, + m ) ~  
+ ~ ~ - ~ ( ~ / A E ) + ~ ) ~ ~ F ] + ~ A P , ( v H + ~ ~ ~ " E - ~ ~ F )  

(16) 
L ( ~ , A )  = f [ ( a o ~ - w ~ , ) ~ + e ~ ( P , + + ) ~ + e - + ( u ' p , - J ; T i ) ~  

+ m e " ( l / A E )  + m ) e + F ]  - iAP,(uH + v'e-+E - eCF). 

As we expect, this Lax representation does yield an ultralocal fundamental Poisson bracket 

W x ,  h)?Uy, C L ) ~  = Ir(A, !4. U x ,  A) @ 1 + 1 8 L(y, CL)IW' - y') (17) 

where the matrix r(A, f i )  is found to be 

which is undoubtedly a solution of the classical Yang-Baxter equation 

[ ~ I z ( L  CL), r13& v)I + [ m ( A . ,  I*). Tu(& v)l + h 3 ( A t  v L  r d f i .  v)l = 0. (19) 

By setting @./(I -A))  --f A, (p / ( l -  p))  4 f i ,  we see that the r-matrix (18) is just a 
trigonometric solution of (19) [14]. 

The fundamental Poisson bracket (17) has an equivalent but more instructive description, 
if we introduce the transport matrix T ( x ,  A) = P exp[/l dr L ( x ,  A)] 

V ( x ,  A ) y U x ,  &I = [r(A.  P), T ( x ,  A) @ T ( x ,  CL)]. (20) 

It is then obvious that P ( T ( x ,  A)) generates an infinite number of quantities in involution. 
This conclusion achieves the full proof of the classical integrability of the system (7). 

On the other hand, the integrability of the system (7) can alternatively be demonstrated 
by showing the nonlinear equations (6) have a (hidden) dressing symmetry. This means 
looking for the so-called dressing transformations for our system which are such gauge 
transformations that preserve the form of the Lax connection (16). The key step to this end 
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is to define the relevant Riemann-Hilbert (factorization) problem. Since the Lax connection 
(16) is defined on the loop algebra sl(2) 

+m 
X ( A ) =  A ‘ ( a i H + b , E + q F )  

i=-a- 

the subalgebras g* of this loop algebra entering the Riemann-Hilbert problem are specified 
in a manner similar to that used for the Heisenberg model [IS]: 

(21) 

where the integration contour C- encircles two singularities p = 0, 1, but C+ only encircles 
one singularity p = bo. r* are projection operators, which respectively correspond to the 
expansions of r ( A ,  p)  defined in (18), either in powers of (A/@) or in powers of (p/A). 
With respect to this explanation, we have 

d p  &(A) = R d X ( A ) )  = %?K $* ~ ( 1 / ~ ( 1  - P ) )  Trdr*@, @ X W l  

It is easy to check that g* = Im R* indeed constitute two subalgebras of s?(2). Besides 
any X ( A )  E s!(2) has a unique decomposition, 

X ( A )  = X+(A) - X - ( h ) .  

This is the definition of our Riemann-Hilbert problem. 

an element of sl(2) and set 
, In turn welook for the dressing transformations for Lax connection (16). Let X ( A )  be 

OX(X, A) ( T X T - ’ ) ( x ,  A) = O+(X, A) - & ( x ,  A). (22) 
Then o X ( X ,  A) is also an element ofS”l(2) 

In (22) T ( x , A )  is the aforesaid transport maaix which obeys the following linearly 
differential equations 

a$-@, A) = M ( x ,  A)T(x, A) a ,T(x ,  A) = L ( x ,  A)T(x,A).  (24) 
A dressing transformation is a gauge transformation for Lax connection with either O+ 

or 0-, whose infinitesimal form is 

6 , ~  = a,,@+ - [M. 0+1 6,~ = ai@+ - [L, e,]. (25) 
The gauge transformation with 0- gives the same results. X ( A )  is usually taken to be 
spacetime independent. Thereby, it follows from (22) and (24) that 

a,@, = [M, o,] ale, = [L, ox]. (26) 
Inserting (16). (22) into (U) and (26) we get 
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These are the infinitesimal dressing transformations for the basic fields @, U and w .  in which 
the transform parameters xil yj and zi (i = 0, f l ,  f2, . . .) are some non-local functions of 
the basic fields. 

Straightforward computations show that (27) are indeed symmehic transformations for 
equations of motion of our system (7). Moreover, they do preserve the form of Lax 
connection (16). Hence there is an infinite-dimensional symmetry hidden in our system, 
which exposes the integrability of (7) once again. 

It is worth emphasizing that the generator of the dressing transformations is the transport 
matrix T ( x ,  A). This conclusion is valid when we note that 

( U X .  A), @ ( Y ) I  = - ( I / ~ K ) H S ( X ~  - ~9 
{ L ( X ,  A). t ~ ( y ) l =  -(I/zc)[(I - A ) U ( X ) H  + (1 - A)u’(x)~-+*)E + h e m ( x ) ~ ~ ~ ( x i  - y ’ )  

{L(x,  A). w ( y ) ]  = - ( 1 / 2 ~ ) e + ‘ ” ~ ~ ( x l  - y ’ ) .  (28) 
By combining these brackets with (24). (27). the dressing transformations for the basic 
fields are rewritten into 

S X @ ( Y )  = 2K i- z ( l / h ( l  - W T r [ X W - ’ ( x ,  A)lT(x. A). @ ( Y ) ) ]  
dA 

dA 
S X W ( Y )  = 2 ~  -(l/A(l - A ) ) T r [ X ( h ) T - ’ ( x , h ) { T ( x , A . ) ,  w (y ) I ]  i. 2x1 

(x > Y ) .  
These formulae explicitly display the generation relationship of the dressing 6x4, Sxu and 
6xw by T ( x , h )  (in a nonlinear way). 
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